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ABSTRACT In Section III, we show that a piecewise const-
ant filter also possesses the property of robustnes

The classical solution for linear estimation for a particular class of PSD's - the .p-point spec-
of a signal in additive noise is given by the well- tral class. A proof of the robustness of the piece-
known Wiener filter. In certain circumstances, wise constant filter is given along with a justifi-
however, it is advantageous to have a filter which cation based on distance measure concepts. Several
is piecewise constant and which provides good per- authors have previously considered aspects of robust
formance over an entire class of signal and noise filtering. Kassam and Lim [11 and Kassam, Lim and
power spectral densities. First, a procedure is Cimini [2] considered robust Wiener and matched fil-
presented for determining the optimum piecewise ters using a band-model for the PSD's. Poor [3, 4]
constant filter. Then, for a particular class of then considered these filters in a more general
power spectral densities,termed the p-point spect- framework.
ral class, the robust filter is determined. The results obtained here are useful in situa-

tions where filtering is implemented digitally (e.g.
I. INTRODUCTION using FFT's). In image processing applications, for

example, Wiener filters have often been used [5).
Also, piecewise constant filters may be particularly

In the linear estimation of a random signal in useful in situations where the filter parameters
additive noise, an estimate,i(t), of the signal, must be periodically adjusted. This is due to the
9(t), is obtained by passing the received signal, relatively simple forms of these filters.
X(t) s(t) + n(t), through a linear filter with
Impulse response, h(t,T). Assuming the signal and II. OPTIMUM PIECEWISE CONSTANT FILTER
noise processes are real, zero-mean, uncorrelated
and wide-sense stationary with power spectral den-
sities (PSD's), S(w) and N(w), respectively, the As stated in the Introduction, in certain sit-
Wiener filter solution is obtained by choosing uations it may be advantageous to use a piecewise
h0(t) , the impulse response of the optimum filter, constant filter. For example, this is particularly
to minimize the mean-square-error (NSE) between the helpful when the filter parameters must be periodi-
tialni estizete. t he mean-sua e rr tncally adjusted. In this section, we provide a pro-
signal and its estimate. The Fourier transform, cedure for obtaining the optimum piecewise constant
HO(w), of ho(t) is the solution to filter.

Considering symmetric PSD's such that S(w'S(-w)
e(S0N;Ho) "H e(SN;H) (1) and N(w)-N(-w) with total signal and noise powers,2, b

nd a given-by

where the MSE, e(S,N;H), is given by N 02 1 S(w)dw (a
S= ~ ~wcw(4a)

e(SN;E) IS()I1H()1-()Hw1 d (2)
2 1 N(w)dw (4b)

ON =

This is for the case where H (4) is not constrainedto b casal we assume a fixed-form filter that is ptecewise
to be causal. 0osat ~.

The solution to (1) is found to be constant, i.e.,

H(w) . CJ, aj- 1 w < aj, J-192 .... a (5)

(w " S(W)+N(w)

where the C are real, non-negative coustants and
the well-known Wiener filter. Knowing the signal {a increasing with a 0 and where
and noise PSD's, one can thus obtain the optimum i a m
Wiener filter. is the known bandwidth of the signal. The result-

Section II details a procedure for obtaining ing MSE becomes
a piecevise constant filter wh$ch qinimizes the
KSE. By deriving the necessary conditions fbr min- e(SN;R) I J [S(w)(I-Cj)

2
+N(w)C

2
ldw (6)

Imization, the optimum piecewise constant (OPC) 1 J ) J
filter is shown to be distinct from the optimum J-1
quantization (OQ) of Ho(W). The 0TO filter pro- The breakpoints, aj, and the levels, Cj, then must

vides a simplified filter structure with only a be chosen to minimize (6).
mall degradation in performance.
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To minimi7e the MSE we differentiate it with interval (ai 1 , ai), iJ), if there exists a subdi-
respect to a1 and Cj The partial derivative with vision with different levels which results in a

respect to Cj gives lower KSE, then the original filter is not optimal.
The MSE associated with the frequency interval [a,b)

a N jaj with filter level Cab is given as

- a [-2(1-C )S(w)+2C22(w)]d.2 2 2
a a a(SN;R) ab - (lCab) a S abaNab (10)

Setting this equal to zero and solving for Ci, we where b
obtain 8 2 1 S(w)dw

i Sab T

• J S(w)dw and b

C- a () J(w)dw

rj N W
(S(w)+N(w))dw ab

j-- With Cab defined as ir. (7), the partial MSE of (10)

becomes 2 2

yhich is simply the ratio of the signal power in °gab Nab
the interval [aj_,,a1 ] to the corresponding sig- e(S,N;H)'ab . 2 2 (11)

nal plus noise power. The partial derivative with aS ab+ N b
respect to aj gives

Now, using a different filter, H*(w), obtained by
.dividing the interval [a,b) into [a,t) and [t,b)

.-- (I-C)22S(a )-(1-C+)2S(aj)] + with levels determined from (7), with

I
a S(w)dv

2 2

,-C c i N(a1)-Cj+N(a). a w

2 1t (N(w) dw
Setting this equal to zero, we obtain the equation O (t)2 = N d

a

2 2 2 2 2 2
Sae) (2-Cj-Cj+ -CI-N(a 1 ) J+14Cj) (CI+fCl], thus a(b-t)-Sab -OS(t) and a N(b-t)=ON abN(t)

we obtain the partial MSE

SI s U-1 (8)

2a 2 (bta2 bt
(where we are also assuming that S(w) and N(w) are - oS(t)o (t) Os(bt)N(b-t) (12)
continuous at w = a,, 1 9 j S m). Equations (7) e(SNa2) ab

=  2 2 + 2 2

an (8) are a set of (2m-l) equations which must be St N t N

satisfied for a piecevise constant filter to pos-
sibly be the OPC filter. When considering a filterfor which C -Cj for sooe J-jo, then (8) is always 1 , writing out the MSE expressions and performing

r w +l f some algebraic manipulations we obtain the condi-
satisfied for J"jo" For other cases, (8) is equi- tion for lowering the MSE. If there exists a point

Valant to te(a,b) such that

o(aC) i 1+1 (9) a 2 W a2(b-t)
SO 2N2 (St)(13)

(provided we allow H0 (a) to have any value when N O -

3a stated above, when C-C for som J, (8) then the filter with C -Cj is not optimum. On
AssaeJbve hnCi- 1+1 fo oej,()j j+1

Is alwys satisfied. However, an the following dis- the other hand, if VygilMU SWIM-aesion shows, given the number of allowable break-

points, this situation is not optimal unless Ho(w) 2 2 DC Buff SeCt 3
is Itself a piecewise constant filter. Consider a a - for all tc(a,b) UNANNOUNCUD a
plecewlse constant filter with C -Cj(for some J, 2 2 W" ',!ION

i J+l frsoej 0 3 (t) a~bt JUS 0-0I'
d such that the necessary conditions above are ............................

satisfied). For any constant interval [a,b) with -hen B
level CA (i.e., either [ejl_,j+l ) or any other then

NITRIOUIOIAY*MMW91st V AvA an o C



lo00n1 )

~2 H (a) - ~ +
s 2 (15b)

St t . for all tc(a,b)
K(t) ~2

ayab which must be solved simultaneously to obtain the
OQ of %o(w). Obviously, the OPC filter and the OQ
of Ho(in) are not the same, and, in a linear filter-

or, equivalently, H(.) is constant over the in- a

terval (a,b). Thus, if (13) is not satisfied for ing sense, the OQ filter is not optimum. That is,

all the intervals, Ho(w) is a piecewise constant it is not the best way to obtain a plecewise con-

filter. stant filter given the signal and noise PSD's. If

Tor the special case where C =Cj+ I for all J, RO(W) is already a piecewise constant filter, the

the filter is a constant for all w and is given as OPC and OQ filters will coincide.
As an illustration of the design of an OPC fil-

2 ter, we will consider the specific class of signal
0S  and noise PSD's possessing the general Butterworth

N(w) . - form (Q-) i.e.,
02S + ao2

S~) A
This filter structure has previously been used (in +(w) - . 2P 9 P X 1 (16.)
two-dimensional form) in image processing applica- l SPi1
tions [51 when very little is known about the sig-
nal and noise processes. and

To obtain the OPC filter parameters, Cj and

-a , we must simultaneously solve (7) and (8) for n

all J. In all but extremely simple cases these e- w) v2n t (16b)

quations are not directly solvable but require an I+

iterat'e technique for solution. Max [6] devel-

oped an algorithm for iteratively solving equa-
tions such as these. For the examples which we where
will consider a simpler searching algorithm for 2
finding the minimum of a function of several vari- A p S si
ables was applied to the general expression for A -- sin-
the mSE (6).

Equations (7) and (8) are only necessary con- a
ditions. In general, the sufficient conditions and
are difficult to obtain. The best answer is that 2M
if all the second partial derivatives of the MSE B -- sin-
with respect to the levels and the breakpoints ex- 2n

ist, then a critical point determined by the nec-
essary conditions is a minimum if the matrix whose Using these as our nominal densities we determined
ith row and jth column element is the OPC filter parameters and calculated the resul-

2 ting MSE's. Table 1 gives the results for several
x.C ora values of p, n, and as. In all cases, we assumed

c a j 1 C and av.l. The MSV using the optimum filter
point has also been tabulated for comparison. These re-

is positive definite (61. suits show the small degradation in performancewhen
At thispoint it is interesting to consider using the OPC filter as opposed to the optimum fil-

the optimum quantization (OQ) of He(). The OQ of ten, 1o(v). In each case, the optimum filter is
Ho(w) is obtained by minimizing very nicely approximated by the OPC filter. That

is, the OPC filter provides the benefits obtained
from quantizing H0(w) but with a smaller MSE than

f - f (Ho(w)-C ) 2dv (14) if we were to use the OQ filter. One should note

J-1 a 0 that for this particular set of PSD's very little
J-1 improvement in performance is obtained by increas-

Ing a (i.e., finer "quantization").
Minimizing as before, we obtain the necessary con- As an example, we will consider the case p-3,
ditions vol, and aS-I, i.e.,

[ whdws w
J, sarage value of Io(t ) on the

cj - j . JI "interval (aj_, , ail "
j(w) - 2

(1a) 14w
and The optimum filter (3) is given asIi



.1 CV) - (N.)1 faJ N(w)dw- PN a2, 1=1,2,3 .... a (19b)
a 1+ 2 s'-14 2)  8J

3 sift(4. 2
where a0 0 , a3an, 0 c PS' PN t 1 and

with the corresponding MSE, e(S,N;Ho)-0.3934. The
01C filter (m-2) is determined to be a

) I 0.615,j
w l< 1.392 J12PSJ 'JlI P - and where we are assuming that S(w)

IOPC ( ) " O.080,lvlt 1.392
(u-2) and N(w) are symmetric about the origin and contin-

uous at w-a1 , J-1,2,...m. The breakpoints, a1 , and
with the corresponding MSE, e(S,N;Ha . and the fractional powers, P2 j

HOPC-2 ad th frctioal pwers pSa and pN aN, are as-

which Is a degradation in performance of only 2.4%. i
When an additional breakpoint to allowed (i.e., sumed known. The mth .breakpoint is taken to be in-he additalereakpo is fooed (finity unless the bandwidth of the signal is also
us,3), the OPC filter is found to be known. These classes of PSD's are termed p-point

0.627,j
1wj 1.1844 spectral classes, and are useful because the frac-

BOPC (v) - 0.352, 1.1844 _Iwl< 1.6807 tional power is an easily measured parameter of theS0.039,lwz 1.6807 process.
(m-3) .Intuitively, it seems that if the only know-

ledge about the signal and noise PSD's involves the
with the corresponding MSE, e(S,N;H )-0.3972, fractional powers, then the least favorable signal

0PCm-3  and noise PSD's can be anything so long as their
a degradation from using Ho(w) of less than 1%. As ratio is piecewise constant. The previously men-

shown in Figure 1, the OPC filter nicely approxi- tioned image processing application hints at this
solution. Also, previous work in robust filtering

mates the optimm flter, Ho(0), at the cost of [1,31 has shown that the least favorable PSD's tend

only a small degradation in performance. to look as much alike as possible. These intuitions
are stated more rigorously in the following theorem.

III. ROBUSTNESS AND THE p-POINT SPECTRAL CLASS Theorem 1: For any signal and noise PSD's, .S(w)
and N(w), which are members of the general p-point

In order to implement the Wiener filter, the classes, 4 and)4, respectively, the robust filter,

signal and noise PSD's must be known exactly. This HR(w), satisfying (18) is given by

is usually an unreasonable assumption and, conse- SR(w)
quently, small deviations from these assumed, or BR(w) (.)+NR(.)  (20)
nominal, PSD's may result in large degradations in -
performance. In situations such as these we would
like to design filters which are less sensitive to w t
deviations from the assumed PSD's. are such that

Essentially, we are interested in obtaining a
filter, H(w), which will give a non-trivial upper S -(w) k NR(w), we[aj,'aj) (21)

bound for the MSE over the classes of signal and
noise PSD's, 4 and N. Such a filter is robust in
the sense that a certain level of estimation per- where
formance is guaranteed for the entire classes, and
X. Mathematically, the robust Wiener filter,H R(w), *j  2

is defined to be the minix filter such thata
J  a

k 2' -1,2....,n (22)
sin max max a1  pONa

SeZ e(S,N;H) - ScA e(SN;H) (17) JN w I
a NeN NeX aJ-1

If 1(w) Is also the optimum filter for a least fa- Proof: The right-hand side of (18) is true by the

vorable pair of PSD's, SR(w)aL and NR(w)cX, thenwe definition of HR(w) as the optimum filter for SR(w)

have and NR(w). Thus, it remains to show that

G(SN;BR) s e(SR.NR;I) 1 e(SR.NR;H) (18) a(S;N;,e) 1 e(SR ,NR;. ) for all (S,)clx(.

for any pair (S,N)axW and any linear filter H(w). The appropriate MS's are calculated as
The particular classes of PSD's which we will

consider are defined as 11 2 2e(RN ;R).l J ( R, (w) 4- J(

A(S(.)If faJ S(w)dw - Ps a2, jl,2,3.... ) (19a) and

a Jj a k )
" (S.N;RR).

_ u I j(s(w)(_ +N(w) I
Jul a,-l I

l|-



B Dut since S(w) and SR(w) both belong to t and N(w) a S

knd NJ(v) both belong toM, both quantities reduce + Pf (S-S) YC(N Ri))dwJ (27)
. . alR

to the same result and we obtain 
J- 1

Is P 0 ) 2 However, from Theorem 1, the ratio SR/MR is piece-
(SN;HR)e(SRNR;R) -I S2 pN 2 (23) wise constant so that (27) becomes

Y j ON ' " d(SN)-d(S NR)] t

and the assertion is proved. Thus, once the ro- 2 (SR

bust filter is constructed it gives the same level
of performance for all signal and noise PSD's in faj a
the jgeneral p-point class for which it was defined. [AJ(-NdW+ "

Contrast this with the performance of the optimum A j(N-N)dw g p c (S-SR)dw]
Wiener filter, Ho0(w), which may degrade consider- 

Jl ia - R

ably with small deviations from the assumed PSD's.
It is instructive to consider the statement

made earlier that the least favorable PSD's tend where A and B are constants. But since S(w) and
to be "closest" in some sense. We will use the

concept of distance measures [7,8] to justify this SR(w) both belong to Land N(w) and NR(w) both be-

statement. We have the following lemma. long to X, the right-hand side is zero and we ob-

Lema 1: The least favorable PSD's, SR(w) and tain

RR(w) , defined as in Theorem 1, minimize the dist- d(S,N) >_ d(SR,NR) for all (S,N)elxA

ance measure, d(S,N),over the p-point spectral the desired result.
classes,. andM A, where d(S,N) is defined asl Example: A simple (although somewhat contrived) ex-

a a ample serves to illustrate the performance invari-

d(S,N) E N[C(L)] - 2f N(w)C(L)dw (24) ance of the robust filter. Assume the nominal sig-
0 nal and noise PSD's are given by

v) {1/2, l , 1
where C(*)is any real, continuous, convex function 0 0, otherwise
on and 0 S(w) l-w, 1w C 1

n=N(w)" No(w) O, otherwise

Proof: Assuming d(S,N) is finite, we must show
that the least favorable pair minimizes the dist- 2 2 1
ance measure, i.e., with total signal and noise powers oa a T- We

d(SN) for all (SN)4xX (25) will assume that these PSD's are really "guesses"
d(SRN R) • based in part on power measurements made at the ar-

Now, bitrarily chosen p-point locations a1.1/2 and a21

(the signal bandwidth value which has been assumed
(s a a S known). The optimum filter for these nominal PSD's

2 d(S,N)-d(.,NR)] I [ j NC( )dw- f N C(-)dw] is obtained asJaj_
1 R is o as

SoW) 3-2 w l -

J1N(c(S)_c(._R))dw with the corresponding minimum MSE, e(So,No ;Ho ) =
J.l 'j_ 1  N NR 0.0717. The robust filter, 1R(w), designed using

only knowledge of the fractional signal and noise
powers is obtained as

+ ((-N )C(-)dw, (26)12
aj-1 R R R~w) 2/3, 1/2 1 1.1 < 1

* with the corresponding MSE, e(So,No;H,)-0.0743 (a

where we are assuming that 0 < SR(w),NR(w) < -. degradation of only -3.6%). Suppose, now, that the

But, for convex functions, C"(w) x 0, so that actual signal PSD (let N(w)-No(w)) is

- 1, 0 r w < 1/4, 1/2 < jlv <3/4
. V- 0, otherwise

S C. R -
5tR S R
" - ( R - ) R Using the previously derived optimum filter, H(W),

n(26) then become (after some manpula- the performance degrades -13% to a value of
Equation e(S,No Ho)0.0811 while the robust filter maintains
ties)
1d(S,)-d(S 3t,N)(a )a S. S. S the same performance level, e(S,N;HR)0.0743. Ob-

-1t viously, for any deviation in So(w) and N(w), soR' J-1 a _1  Ri "Rt a 0
l long as the resulting PSD's are in the general clas-

t w dependence has been dropped for convenience. see, L and M, the robust filter will provide the

-Il /'iliill
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0.5 Figure 1. OPC filter for Butterworth PSD's,

p.3,n.1,as-l.
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